
Target Generation for Internet-wide IPv6 Scanning
Austin Murdock

1,2
, Frank Li

1,2
, Paul Bramsen

1
, Zakir Durumeric

2
, Vern Paxson

1,2

{austinmurdock, frankli, paulbramsen, vern}@berkeley.edu, zakir@icsi.berkeley.edu

1
University of California, Berkeley

2
International Computer Science Institute

ABSTRACT
Fast IPv4 scanning has enabled researchers to answer a wealth

of new security and measurement questions. However, while in-

creased network speeds and computational power have enabled

comprehensive scans of the IPv4 address space, a brute-force ap-

proach does not scale to IPv6. Systems are limited to scanning a

small fraction of the IPv6 address space and require an algorithmic

approach to determine a small set of candidate addresses to probe.

In this paper, we first explore the considerations that guide design-

ing such algorithms. We introduce a new approach that identifies

dense address space regions from a set of known “seed” addresses

and generates a set of candidates to scan.We compare our algorithm

6Gen against Entropy/IP—the current state of the art—finding that

we can recover between 1–8 times as many addresses for the five

candidate datasets considered in the prior work. However, during

our analysis, we uncover widespread IP aliasing in IPv6 networks.

We discuss its effect on target generation and explore preliminary

approaches for detecting aliased regions.

CCS CONCEPTS
• Networks → Network measurement; Network properties;
• Security and privacy→ Network security;

KEYWORDS
IPv6, Scanning, Network Measurement

ACM Reference format:
AustinMurdock, Frank Li, Paul Bramsen, Zakir Durumeric, and Vern Paxson.

Target Generation for Internet-wide IPv6 Scanning. In Proceedings of IMC
’17, London, UK, November 1-3, 2017, 12 pages.
https://doi.org/10.1145/3131365.3131405

1 INTRODUCTION
Internet measurement has greatly benefited from recent advances

that facilitate effective exploration of the global IPv4 address space.

By exploiting the ability of modern hardware and connectivity to

transmit over a million packets per second, tools like ZMap [12]

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IMC ’17, November 1-3, 2017, London, UK
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5118-8/17/11. . . $15.00

https://doi.org/10.1145/3131365.3131405

and Masscan [18] have fundamentally enhanced the ability of re-

searchers to conduct wide-ranging assessments of Internet ser-

vices, including the use of cryptography in practice [4], uncovering

network administrator behaviors [21], and tracking vulnerability

remediation [11].

These tools leverage the density and limited size of the IPv4

address space: today’s scanning speeds are such that it is feasi-

ble to exhaustively enumerate all possible IPv4 addresses in order

to conduct comprehensive scans. However, as has long been rec-

ognized [3], IPv6’s much larger address space renders exhaustive

probing completely infeasible. This then raises the question for mea-

surement researchers of how to obtain at least a degree of global

IPv6 address visibility somewhat comparable to the comprehensive

IPv4 visibility provided by tools such as ZMap.

While prior work has developed sophisticated techniques for

inferring the underlying structure of how IPv6 network operators

assign addresses in their networks [14], and, separately, for how

to leverage IPv6 address assignment policies to abet network re-

connaissance [17], the question of how to employ these insights to

facilitate effective global IPv6 scanning remains.

In this work we consider the basic problem of how to draw upon

a set of IPv6 seeds—i.e., collections of IPv6 addresses known to host

systems of a particular nature—to determine additional addresses

that are likely to prove fruitful for scanning. We consider the salient

properties pertinent for leveraging a given set of seeds, and develop

the general notion of Target Generation Algorithms (TGAs) that
extrapolate from the set of seeds to identify target addresses to

scan. To manage the intractable scale of the IPv6 address space,

our analysis incorporates the key notion of a probe budget that
specifies constraints on how many scan packets a researcher can

tractably send. TGAs strive to extrapolate from a set of seeds the

most promising IPv6 addresses to probe to find additional systems

of interest, given the constraint of a fixed probe budget.

As a concrete instantiation of a TGA, we develop 6Gen, an algo-

rithm that leverages a set of seeds to identify dense address space

regions. It operates under the assumption that dense regions of

seeds correlate with dense regions of active hosts. 6Gen clusters

similar seeds together into high density regions, generating scan

targets of addresses within those regions.

While 6Gen’s design is fairly simple, its utility becomes evident

when using real-world datasets as seed inputs. From a train-and-

test evaluation comparing 6Gen with Entropy/IP [14]—the state of

the art algorithm in analyzing IPv6 address structure—we find that

6Gen can recover between 1–8 times as many addresses for five

candidate seed datasets considered in the prior work; for one of

the network datasets, it was able to predict over 99% of addresses.

In addition, we employed 6Gen on an extensive DNS-based seed

dataset and conducted active IPv6 scans of the generated targets,

discovering over 55M new active addresses. However, we also

https://doi.org/10.1145/3131365.3131405
https://doi.org/10.1145/3131365.3131405

IMC ’17, November 1-3, 2017, London, UK Murdock et al.

uncover the presence of large-scale IP aliasing, where all addresses

within massive network prefixes respond. We develop an initial

technique for detecting large aliased regions, and find that even after

filtering discovered addresses in those regions, 6Gen still discovered

over a million new IPv6 addresses across thousands of networks.

While our preliminary evaluation indicates that 6Gen may gen-

erate more effective target lists than Entropy/IP, this comes with

the key consideration that Entropy/IP was designed specifically to

illuminate overall address structure, rather than to produce scan-

ning targets given a particular probe budget. An important item for

future work is to analyze the underpinnings of these differences

and subsequently refine such algorithms to enhance their efficacy

at identifying promising targets for IPv6 scanning. Additionally,

further developments in IPv6 scanning must contend with the IP

aliasing that occurs in the IPv6 address space, where responsive

addresses may not meaningfully equate to distinct hosts. A promis-

ing direction for more effective IPv6 scanning is tighter integration

between the TGA and the network scanner, where a feedback loop

can incorporate fresh scan results to inform the target generation as

a scan progresses. With such developments, we can move towards

wide-ranging assessments of the IPv6 Internet.

2 BACKGROUND
In this section, we provide a brief background on IPv6 addressing

and introduce the domain-specific terms we use in this paper. We

refer the reader to RFC 2460 [9] for a detailed description of the

protocol.

IPv6 has a much larger address space than IPv4; IPv6 addresses

are 128 bits. IPv6 unicast addresses consist of three parts: (1) a

global routing prefix, (2) a local subnet identifier and (3) an interface

identifier [20]. The interface identifier may be generated by the

client using Stateless Autoconfiguration [30], by the server using

DHCPv6 [10], or statically assigned [17].

We represent IPv6 addresses in a human-readable text

format using eight groups of four hexadecimal digits, with

each group representing 16 bits and separated by colons

(“:”). We call each hexadecimal digit (corresponding to four

bits of the address) a nybble. An example IPv6 address

is 2001:0db8:0000:0000:0000:0000:0011:2222. As IPv6 ad-

dresses often contain many zero-valued nybbles, a compressed

representation excludes leading zeros in each group, and substitutes

the longest sequence of all-zero groups with a double colon notation

(“::”). Thus, the example IPv6 address has a compressed representa-

tion of 2001:db8::11:222. CIDR notation for IPv4 is identically de-

fined for IPv6. We also denote an address range using nybbles with

the wildcard value “?”, indicating a dynamic nybble that can range

across multiple values. For example, 2001:db8::?:100? represents
256 addresses, including 2001:db8::5:1000, 2001:db8::8:100a,
and 2001:db8::1003.

3 RELATEDWORK
Prior work on IPv6 scanning falls into three broad categories: (1) de-

veloping methods for extracting IPv6 addresses from publicly acces-

sible data sources (e.g., DNS records), (2) analyzing known addresses

to understand allocation patterns, and (3) designing algorithms that

generate address targets to scan.

3.1 Extracting IPv6 Addresses
When querying for the IPv6 PTR record for an address prefix, Fiebig

et al. [13] identified that many DNS servers respond differently if

there exists a PTR record for some address within that prefix, than

when such a record does not exist. Leveraging this insight, they

mined IPv6 addresses from DNS servers by recursively querying

for PTR records for address prefixes. However, not all DNS servers

conform to this observed behavior, preventing Fiebig et al. from

comprehensively extracting all IPv6 addresses in DNS records. In

total, they collected a dataset of 5.8M unique addresses.

Gasser et al. [16] explored a more extensive collection of ad-

dresses from various active and passive sources. Passive sources

included network taps on a European Internet Exchange Point and

the Munich Scientific Network’s Internet uplink. Addresses were

also actively collected from crawls of the Alexa Top 1 Million do-

mains [2], TLD zone files, and DNS datasets from Rapid7 [26, 28]

and CAIDA [6]. In total, the authors collected 148.6M addresses via

passive sources and 2.7M addresses from active sources. To assess

the liveness of these addresses, Gasser et al. extended ZMap [12]

to support IPv6 scanning. They found that 76% of addresses from

active sources were responsive to ICMPv6 pings, compared to 13%

from passive network taps. They released their dataset of collected

addresses on their website [15].

3.2 Identifying Addressing Patterns
RFC 7707 [17] describes several known practices for assigning IPv6

addresses that a network scanner may be able to leverage. These

practices include embedding human-readable text in the address

(e.g., DEADBEEF), using only the least significant address bits, en-

coding the port of a network service, or inserting the network

interface’s MAC address. The RFC additionally enumerates several

methods for discovering active addresses, such as analyzing DNS

records, performing traceroutes to known addresses, and monitor-

ing peer-to-peer trackers.

Czyz et al. [8] compared the IPv4 and IPv6 firewall policies

of dual-stack hosts. They identified 520K dual-stack servers by

performing DNS A and AAAA queries for domain names in the

Rapid7 DNS ANY dataset [28]. They also found 25K dual-stack

routers by conducting the same DNS lookups on hosts in the CAIDA

Ark traceroute dataset [5]. The team noted that 55% of the routers

and 64% of the servers had addresses with non-zero values in only

the least significant 8 bits or the most significant 4 bits of the subnet

identifier. Furthermore, 80% of the routers and 22% of the servers

had addresses with non-zero values in only the least significant

16 bits of the interface identifier.

Plonka and Berger [25] developed an address visualization tech-

nique called Multi-Resolution Aggregate plots. The technique in-

volves analyzing a set of addresses to produce a novel metric that

quantifies how relevant each portion of an address is to grouping

addresses together into dense address space regions. The authors

showed that plots of this metric can be useful for manually discov-

ering network-specific addressing practices. They also introduced

a method for identifying dense network prefixes from the given

addresses that can be leveraged for scanning. We note that while

6Gen is similarly density-driven, it considers any address space

region, beyond just network prefixes.

Target Generation for Internet-wide IPv6 Scanning IMC ’17, November 1-3, 2017, London, UK

3.3 Generating Scan Targets
The recursive algorithm developed by Ullrich et al. [31] takes a

set of seed addresses and a threshold N as input, and determines

values for all but N bits of an IPv6 address range. The algorithm

requires a user-specified address range to start, with at least one bit

determined (e.g., with a set value). Then in each level of recursion,

the algorithm finds all seed addresses encapsulated by the current

range, and identifies which bit and value pair matches the largest

number of such seeds. It sets that bit in the current range to the

corresponding value, and recurses until only N undetermined bits

remain. The addresses in the final range are used as scan targets.

The authors evaluated this algorithm against the target prediction

methods described in RFC 7707 [17], such as varying the low-order

bytes of seed addresses, and against brute-force guessing. Using 10-

fold cross validation, where they used a subset of seeds for training

and the rest for testing, the authors observed that their algorithm

outperformed the other strategies in predicting test addresses. This

algorithm shares similarities with 6Gen, as it produces targets from

address ranges. However, it can only output ranges of constant size

(dependent on the parameter N) and requires an initial range as

input, whereas 6Gen automatically can produce multiple address

ranges of varying sizes.

Most recently, Foremski et al. [14] introduced Entropy/IP, an

algorithm for discovering structure in a set of IPv6 addresses. En-

tropy/IP identifies adjacent nybbles whose values have similar levels

of entropy across the addresses, and groups them together into seg-

ments. For each segment, it clusters segment values along several

metrics. Entropy/IP utilizes a Bayesian network to model the sta-

tistical dependencies between values of different segments. This

learned statistical model can then generate target addresses for

scanning. Across 10 datasets of router and server seed addresses,

the authors employed Entropy/IP on a 1 K random sample of each

dataset and generated 1M targets each, finding 770K addresses

in total were responsive on ICMPv6. 6Gen’s design contrasts with

Entropy/IP’s as it does not aim to learn structure in seed addresses.

Instead, it identifies dense regions of similar seeds to generate tar-

gets from, constrained by a user-provided probe budget.

4 IPV6 SCANNING CONSIDERATIONS
While increased network speeds and computational power have

enabled researchers to scan the full IPv4 address space in minutes

using a brute-force approach [12, 18], the IPv6 address space is

simply too expansive to ever comprehensively scan. To effectively

find active hosts, IPv6 scanners need to be more intelligent and

target ranges that are more likely to contain active hosts. In this

section, we highlight these challenges and explore considerations

for IPv6 target generation and scanning.

4.1 Seed Selection
Algorithms that generate a candidate set of addresses to scan typi-

cally consume a set of seeds—known addresses that are mined to

uncover allocation patterns in order to predict other hosts to scan.

Prior work [16] has typically categorized seeds by service provider

or data source. We observe that while one approach is to consume a

large number of seeds, Internet-wide scans are typically performed

horizontally in order to uncover a class of hosts for future analysis.

For example, one might seek all hosts that respond on TCP/443 in

order to measure a characteristic of HTTPS.

Algorithms may be able to more aptly generate targets for a

specific protocol with this additional data. To further the example,

it may be that an algorithm is better able to predict the IPs of

hosts that support TCP/443 by only considering known hosts that

support TCP/80 or TCP/443 (and potentially exclude hosts that

support TCP/22). Selecting seeds is an important question as they

can greatly influence the targets produced by a TGA.

4.2 Seed Analysis
At the core of IPv6 scanners is an algorithm that attempts to mine

structure in known addresses and generate additional candidates to

be scanned. We observe that there are two approaches to modeling

addresses: dependent and independent. In the dependent model,

there are (perhaps hidden) dependencies between seed addresses.

Thus, the existence of a particular address in the seed dataset affects

the probability that certain other non-seed addresses are also active.

Under such a model, TGAs may be able to leverage these dependen-

cies to uncover patterns that can be used for more efficient scans.

For example, a simple algorithm could perform a linear regression

on seeds (perhaps per network prefix), and predict target addresses

based on the linear model.

In the second model, seeds are treated as independent and iden-

tically distributed random samples of true active addresses. In this

model, the regions of address space with the highest density of ac-

tive addresses will likely have the highest density of seeds. Unlike

the first model, the observation of a specific seed has no implica-

tions on other potentially active addresses. Under this model, a

natural scanning approach would be to comprehensively scan the

most dense regions.

The dependent seeds model can lead to TGAs that may be more

efficient, as they attempt to model the seed data to identify patterns.

In comparison, it may seem that the independent seeds model

results in more naive, less systematic approaches. However, this

second model does benefit from simplicity and flexibility, as its

prediction methodology can be applied across any network prefix

at any time. Computationally, it can also be more efficient as it

does not depend on any learning process, which may have to be

performed individually for every network prefix.

Relevant to the datamodeling is the data source’s completeness, a

property that is inherently unknown. The independent seeds model

may be more appropriate when the collected seeds represent only

a small portion of the actually active addresses, as patterns in seeds

may not emerge enough to be inferred by a learned model. Con-

versely, when the seeds represent a significant fraction of addresses,

it may be easier to identify and leverage patterns for effective scan-

ning, although in such a case there are inherently fewer addresses

left to discover.

Additionally, it is important to design a target generation algo-

rithm that remains effective when operators deviate from standard

practices, given that organizations do not always adhere to RFCs.

For example, several of the routed prefixes from RouteViews [7]

are longer than 64 bits. Although this behavior does not conform

with RFC 4291 [20], there is no technical reason prohibiting this

practice. A TGA should exhibit the flexibility necessary to predict

beyond proposed standard practices.

IMC ’17, November 1-3, 2017, London, UK Murdock et al.

5 6GEN ALGORITHM
In this section we introduce our target generation algorithm, 6Gen.

We present a conceptual overview of the algorithm and the intuition

behind our design decisions. Then, we discuss the algorithm in

detail and the optimizations that we implemented to operate it on

real-world datasets.

5.1 Overview
One natural approach for generating IPv6 scan targets would be

to try to reverse engineer organizational IP allocation schemes.

However, this approach has several downsides. It may be difficult

to determine an allocation pattern from a limited number of seeds.

Networks may use multiple assignment policies for the same region

of address space (e.g., based on host type). Or, it might be difficult

to determine the boundaries between independently managed net-

works.

Instead, we develop an algorithm that identifies dense regions of

similar seeds. We assume that dense regions of seeds are associated

with dense regions of active addresses and model seed addresses

as independent and identically distributed (IID) random samples

of active addresses. This contrasts with approaches that assume

dependencies between seeds. We note that althoughmodeling seeds

as IID random samples leads to a simpler and more flexible target

generation, it may be less efficient because it cannot learn patterns.

6Gen greedily clusters similar seeds into address space regions

with high seed density, and outputs the addresses within these

regions as scan targets. The algorithm operates iteratively, first

identifying the most similar seeds and then clustering together

those that form the densest regions, until the total size of the clus-

tered regions grows larger than a user-provided scan budget. In

other words, the algorithm allocates portions of its scan budget

to “hot spot” regions with many similar seeds, which—under the

assumption that seed density is positively correlated with active

host density—will maximize the opportunity for finding previously-

unknown, active hosts.

Note that 6Gen is not purely density-driven, as it first identifies

similar seeds before clustering them into dense regions. It is possible

that clustering between more distant seeds results in higher density

regions. The motivation behind prioritizing similarity is budget

conservation, as clusters of more similar seeds form smaller regions

that consume less budget.

5.2 Distance Metric
To cluster similar addresses, we must define an address similarity

metric. We use the Hamming distance [19] between the nybble-

level representation of addresses and ranges. This metric counts the

number of nybble positions that differ between two addresses. To

calculate the distance between two regions of IP space, we consider

the distance from any wildcard (?) nybble to be zero. For example,

the distance between 2001:db8::58 and 2001:db8::51 is one; the
distance between 2001:db8::51 2001:db8::5? is zero. We note

that the Hamming distance also equals the number of nybbles that

would become newly dynamic if two addresses were clustered into

a range. Intuitively, this indicates the addresses are less similar as a

larger region is needed to encapsulate them.

Figure 1: Dynamic nybbles for a cluster of 7 seeds (the clus-
ter’s seed set). The cluster has three dynamic nybbles (the
other 29 nybble indices have identical values for all ad-
dresses) and a range of 2::?:?0?

We calculate distance at the nybble granularity because address-

ing schemes are potentially allocated at this specificity and because

we observe that bit-level granularity can lead to pairs of addresses

that intuitively seem less similar while sharing the same bit-wise

Hamming distance. For example, 2::20 and 201:: are 2 bits apart,

as are 2:: and 2::3. However, the second pair intuitively seems

more similar and potentially suggests exploration of the range 2::?.

5.3 Cluster Range Definitions
We use ranges to encapsulate the seeds in a cluster, as shown in

Figure 1. While it is natural to represent ranges of IPv6 addresses

with nybble wildcards accepting any legal value, we additionally

consider nybble wildcards with bounded values. We extend the nyb-

ble wildcard notation to denote specific nybble value ranges with

the following syntax [1-2,8-a]. We describe the tradeoffs between

clustering at the nybble wildcard granularity (“loose” clustering)

and at nybble specificity (“tight” clustering) in §6.3.

5.4 Algorithm Details
We provide pseudocode for 6Gen in Algorithm 1 and walk through

the algorithm in this section.

6Gen accepts a set of input seeds (i.e., known addresses) and

internally maintains a set of clusters defined by a range (the region
of address space that encompasses the seeds in that cluster) and a

seed set (the seeds that lie within the cluster’s range). The algorithm

instantiates with a cluster for each seed, containing the single seed

address and with a range equal to the seed (as shown in Function

InitClusters). In each successive iteration, 6Gen calculates the impact

of growing each cluster by adding the single closest seed. We note

that 6Gen does not merge similar clusters. Instead, it allows seeds

to belong to multiple clusters, and grows clusters independent of

one another.

In each iteration, we first identify the closest seed(s) to each

cluster based on Hamming distance (as shown in Function FindCan-
didateSeeds). We consider all non-cluster seeds that are minimally

equidistant as candidate seeds. For each potential cluster growth

by a candidate seed, the cluster range would expand, potentially

encapsulating additional seeds beyond the candidate seed (thus

further growing the cluster seed set). We identify what the full seed

set of the grown cluster would be under the expanded range, and

compute the resulting seed density—the grown cluster’s seed set size
divided by its range size (as detailed in Function GrowCluster). The

Target Generation for Internet-wide IPv6 Scanning IMC ’17, November 1-3, 2017, London, UK

iteration concludes by growing the one cluster and candidate seed

pair that results in the highest resulting seed density. If there are

multiple growth options that result in the same maximum density,

we prioritize smaller grown clusters as they consume less budget.

Further tiebreaking is performed at random. 6Gen iterates until the

sum of cluster range sizes consumes the user-provided probe bud-

get or all seeds belong to a single cluster (as seen in Function 6Gen).
If using the most recently grown cluster exceeds the probe budget,

we consume the budget exactly by randomly selecting addresses

in the newly grown cluster’s range that were not in the cluster’s

pre-growth range.

We note that the algorithm can result in overlapped clusters

because we consider every non-cluster seed for potential growth,

and we grow clusters independently. We do not attempt to simply

merge partially overlapping clusters because this can result in a

significantly less dense supercluster. Instead, we allow clusters

to partially overlap. We do delete any cluster that becomes fully

encapsulated by another, by comparing a grown cluster’s new range

with all other cluster ranges to find any that are strict subsets. To

ensure that we do not double-count addresses against the budget,

we uniquely track all addresses that would be generated by the

clusters.

5.5 Optimizations
As described in the previous section, 6Gen is conceptually simple

but computationally expensive. For example, the naive implementa-

tion involves iterating over all clusters, and for each cluster, iterating

over all external seeds to find candidates. As clusters grow inde-

pendently, we can easily parallelize cluster growth computation.

We can further reduce the computational complexity with a couple

optimizations, which we describe here.

In each iteration, 6Gen finds candidate seeds to grow each cluster

with and computes the potential change in density for each cluster

growth. We note that only one cluster is changed per iteration

and that because clusters grow independently, all other clusters

remain unchanged and their best growths can be cached between

iterations. This reduces the naive implementation’s runtime by a

factor of O (N) for N seeds.

It is also possible to optimize finding the seeds that need to be

added to a cluster when it expands. We store all seeds in a nybble
tree—a 16-ary tree where each level in the tree represents a nybble

position and branching corresponds to that position’s nybble value.

This allows us to quickly iterate over the seeds that fall within

a given range instead of iterating over all seeds. The nybble tree

also allows reconstructing a cluster’s seed set given its range. As

a space optimization, we only store a cluster’s range and seed set

size, instead of the seed set itself.

5.6 Performance Evaluation
To measure 6Gen’s performance, we implemented a prototype

of 6Gen in 3.6K lines of C++ code, using OpenMP [1] for multi-

threading support. We evaluated it against a set of 2.96M seeds

(described in §6.1) on a Linux server with dual 10-core Intel Xeon

E5-2650 (2.30GHz) CPUs and 256GB of memory. We grouped the

seeds by routed network prefix and separately ran 6Gen on each of

Algorithm 1 6Gen pseudocode, simplified to illustrate conceptual

steps, and without optimizations (see §5.5).

1: clusterList = []

2:

3: function InitClusters(seedList)
4: for seed in seedList do
5: cluster = new Cluster ()
6: cluster .addSeedUpdateRanдe (seed)
7: clusterList .add (cluster)

8:

9: function FindCandidateSeeds(cluster , seedList) ▷ Computes

the minimum Hamming distance between cluster .ranдe and
all seeds in seedList not already in cluster , and returns the list

of seeds that are this minimum distance away.

10:

11: function GrowCluster(seedList) ▷ Consider growing all

clusters by candidate seeds, and select the growth resulting in

the highest seed density and smallest cluster range size.

12: maxDensity,maxIndex ,maxRanдeSize = 0, 0, In f inity
13: maxCluster = None
14: for index in [0, ..., clusterList .lenдth() − 1] do
15: cluster = clusterList[index]
16: candidateSeeds = FindCandidateSeeds (cluster , seedList)
17: for seed in candidateSeeds do
18: tmpCluster = cluster .copy ()
19: tmpCluster .addSeedUpdateRanдe (seed)
20: for otherSeed in candidateSeeds do
21: if otherSeed in tmpCluster .ranдe then
22: tmpCluster .addSeedUpdateRanдe (otherSeed)
▷ Does not further change the range.

23: newDensity =
tmpCluster .seedSet .size ()
tmpCluster .ranдe .size ()

24: if (newDensity > maxDensity) or (newDensity ==
maxDensity and tmpCluster .ranдe .size () < maxRanдeSize)
then

25: maxDensity,maxIndex = newDensity, index
26: maxRanдeSize = tmpCluster .ranдe .size ()
27: maxCluster = tmpCluster

28: return (maxIndex ,maxCluster)

29:

30: function 6Gen(seedList , budдetLimit) ▷ Grow clusters

until the sum of cluster range sizes exceeds the budget. For

simplicity, we elide here details about handling cluster overlap

and final cluster growth sampling to use up the budget exactly.

31: InitCluster(seedList)
32: budдetUsed = 0

33: while True do
34: дrownIndex , дrownCluster = GrowCluster(seedList)
35: oldRanдeSize = clusterList[дrownIndex].ranдe .size ()
36: newRanдeSize = дrownCluster .ranдe .size ()
37: budдetCost = newRanдeSize − oldRanдeSize
38: budдetUsed = budдetUsed + budдetCost
39: if (budдetUsed ≤ budдetLimit) and (seedList .size () >

дrownCluster .seedSet .size ()) then
40: clusterList[дrownIndex] = дrownCluster
41: else
42: return clusterList

IMC ’17, November 1-3, 2017, London, UK Murdock et al.

101 102 103 104 105 106

Number of Seeds in a Routed Prefix

10-2

10-1

100

101

102

103

104

105

106

T
im

e
 (

in
 S

e
co

n
d

s)

CPU Computation Time

Wall Clock Time

Figure 2: Median execution time of running 6Gen on routed
prefixes with differing numbers of seeds. Routed prefixes
with fewer than 10 seeds are omitted as they all required
less than one second to process.

the 10,038 prefixes. We note that while we could parallelize execu-

tion across different prefixes, dedicating all CPUs to running 6Gen

on each prefix linearly was most performant.

We show the median runtime for differing number of seeds in

Figure 2. CPU compute time divides the total number of CPU cycles

spent executing 6Gen across all CPU cores with the CPU clock rate.

Wall clock time measures the actual runtime of 6Gen. Naturally, as

the number of seeds increases, the runtime increases. However, we

note that runtime is heavily dependent on the set of seeds—prefixes

with complex address structures can involve more clustering. For

example, while the prefix with the second most number of seeds

(157K) required two hours of wall clock time, the largest prefix

(189K seeds) required only 55 minutes. Running 6Gen on the entire

seed dataset required 9 hours and a maximum 3.3GB of memory.

6 EVALUATION
In this section, we explore 6Gen’s performance under several oper-

ating conditions to better understand its utility and the scan targets

it generates. For each experiment, we evaluate 6Gen by running it

against the IPv6 addresses in the Rapid7 Forward DNS ANY dataset

grouped by routed block (§6.1) and then scanning generated ad-

dresses on TCP/80 using the IPv6 version of ZMap from Gasser

et al. [16]. We note that we do not address how to best allocate probe

budget across networks, and instead scan networks independently

with a static probe budget in our analysis.

For each variable we tested, we sent approximately 5.8 B probes

at 100 K packets per second.We randomized the order of the destina-

tion hosts and ran each scan in serial to avoid overloading networks.

We follow the guidelines outlined by Durumeric et al. [12] for ethi-

cal scanning. In particular, we signal the benign intent of our scans

through WHOIS and reverse DNS records, and provide project de-

tails and point of contact on a website hosted on each scanning

host. We respect all scanning opt-out requests, blacklisting them

from any further scans.

100 101 102 103 104

Number of ASNs (Ordered by
the Number of Addresses Per ASN)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 (

o
f

A
d

d
re

ss
e
s)

Aliased Hits

Non-Aliased Hits

Seed Addresses

Figure 3: The distribution of seed addresses, filtered aliased
hits, and hits after dealiasing across ASNs. We collected hits
from active scans of targets generated by 6Gen run with a
budget of 1M probes per routed prefix.

6.1 Seed Collection
We collected seed addresses by extracting AAAA records from the

Rapid7 Forward DNS ANY dataset [26]. The dataset consists of

DNS responses to DNS ANY requests for fully-qualified domain

names seen in Rapid7’s Project Sonar scans [27]. We specifically

used the August 11, 2017 snapshot that contained 2.96M unique

IPv6 addresses. We grouped seeds by BGP origin routed prefix. The

seeds resided in 10,038 routed prefixes in 7,350 ASes. In Figure 3,

we observe that the distribution of seed addresses is not heavily

skewed towards any particular ASes; we show the top ten ASes in

Table 1a.

6.2 Dealiasing
During our evaluation, we found that address aliasing has a pro-

found effect on IPv6 address generation and that large-scale IPv6

aliasing is more common than previously discussed. While preva-

lence varied slightly across different scan parameters, we found that

more than 98% of active addresses belonged to large aliased regions

in many experiments. In one example, all addresses in a single /56

prefix belonging to Akamai responded to probes on TCP/80. In

this section, we discuss how we filter out these prefixes from our

analysis.

Existing techniques to dealias IPv6 addresses focus on

routers [22–24] or identifying IPv4 and IPv6 addresses that be-

long to the same dual-stack host [29]. Although these approaches

might generalize, they are limited by the features supported on the

investigated hosts. For example, SpeedTrap [22] is an IPv6 alias

resolution method that uses IP fragmentation information as a side-

channel to detect identical hosts at multiple addresses. However, the

authors reported only being able to use this side-channel for approx-

imately a third of routers they measured. Scheitle et. al. [29] used

variable clock skew to associate IPv4 and IPv6 address pairs with

Target Generation for Internet-wide IPv6 Scanning IMC ’17, November 1-3, 2017, London, UK

AS Name ASN % Seeds

Linode 63949 8.6%

Amazon 16509 8.1%

HostEurope 20773 6.6%

DTAG ISP 3320 5.8%

home.pl 12824 5.4%

Masterhost 25532 5.2%

Hurricane 6939 4.4%

Cloudflare 13335 3.7%

TuxBox 47490 3.0%

OneAndOne 8560 2.4%

(a) Seed Addresses

AS Name ASN % Hits

Akamai 20940 52.0%

Amazon 16509 36.0%

CenturyLink 209 2.5%

GTT 3257 1.8%

Fastly 54113 1.8%

Google 15169 1.8%

Masterhost 25532 1.0%

Cloudflare 13335 0.8%

XO Comms 2828 0.4%

Lidero 13189 0.3%

(b) Aliased Hits

AS Name ASN % Hits

Amazon 14618 12.9%

Amazon 16509 7.7%

OVH 16276 7.1%

Hetzner 24940 5.7%

HostEurope 20773 5.3%

RH-TEC 25560 5.3%

Globe 25234 4.3%

GoDaddy 26496 3.5%

Uvensys 58010 3.2%

DigitalOcean 14061 3.1%

(c) Non-Aliased Hits

Table 1: The top 10 ASes and the percent of addresses within each, for our seed addresses, aliased hits, and hits after dealiasing.

dual-stack hosts. They found that 31% of responsive IPv6 addresses

did not offer the TCP Timestamp option necessary to assess clock

properties. Furthermore, the prior works have only demonstrated

that these methods scale to several thousand addresses, which is

orders of magnitude smaller than the large aliased networks we

have observed.

As a best-effort attempt at identifying aliased regions, we per-

formed active probing of /96 address prefixes that contained respon-

sive scan targets (e.g., hits). For each prefix, we randomly generated

three addresses and sent three TCP SYN probes on port 80 to each

address. If all three addresses within a prefix responded to at least

one of the probes, we considered the prefix aliased. Given the size

of a /96 prefix (2
32

addresses), the probability of randomly select-

ing three responsive addresses in a non-aliased prefix is negligible.

Even if a prefix is non-aliased and has a million responsive ad-

dresses, the likelihood of our experiment falsely flagging aliasing

is less than 10
−10

. Our method will reliably detect prefix aliasing at

the /96 (or larger/shorter) granularity, modulo extensive network

outages. We chose to operate at the /96 granularity as it is a rela-

tively small prefix but the number of probe packets required proved

manageable.

In total, our responsive target addresses resided in 10.2M /96

prefixes, of which 10.0M (98%) were aliased on TCP/80. These /96

prefixes corresponded to 205 routed prefixes in 138 ASes. After

filtering out hits in aliased /96 prefixes, we additionally clustered

our remaining hits by AS, andmanually investigated the top 10 ASes

for aliasing at a granularity smaller than /96 prefixes. We found that

the top two ASes (Cloudflare (13335) and Mittwald (15817)) were

aliased at a /112 prefix granularity, while the remaining 8 ASes did

not exhibit signs of large-scale aliasing. We further excluded those

two ASes (37% of remaining hits).

In general, IP aliasing is heavily concentrated in a small number

of ASes. Of the 7,421 ASes in our seed and hit address datasets, only

140 (1.9%) ASes exhibited extensive aliasing. Akamai accounted for

over half of the aliased hits and Amazon accounted for over one

third (Table 1b). This skew of aliased hits towards a few ASes is also

visible in Figure 3, as nearly 95% of all aliased hits were localized

in five ASes. For these networks, 6Gen did find large numbers of

aliased hits that may not meaningfully represent distinct hosts or

network services—a limitation of the algorithm’s design. However,

0 100 200 300 400 500 600 700 800 900 1000

Budget per Routed Prefix (in Thousands of Probes)

104

105

106

107

108

N
u

m
b

e
r

o
f

H
it

s

W/o Dealiasing

W/ Dealiasing

Figure 4: The number of TCP/80 hits for targets generated
by 6Gen, for varying budgets.

as aliasing is concentrated to relatively few networks, 6Gen can still

be effective on other networks. Unless noted otherwise, we count

removed /96s as zero hits to provide as close as possible to a lower

bound on the number of addresses we found in the remainder of

the section.

6.3 Design Decision: Tight versus Loose Ranges
As discussed in §5.3, 6Gen can generate clusters at the nybble speci-

ficity granularity (“tight” ranges) or can use the fully undetermined

nybble wildcard granularity (“loose” ranges). A loose range em-

phasizes more extensive exploration of early-formed clusters with

higher densities, as these clusters are fully expanded by the loose

range, consuming more of the budget early on. In contrast, a tight

range results in exploring more or larger clusters, as each cluster’s

range is tightened. To understand the tradeoff, we compared the

raw number of hits found using both approaches. With a budget of

1M probes per routed prefix, 6Gen with loose ranges found 56.7M

hits on TCP/80 whereas tight ranges resulted in 55.9M hits. The

pattern held after filtering out aliased hits with 1.0M versus 973 K

hits and we use loose ranges in our later experiments.

IMC ’17, November 1-3, 2017, London, UK Murdock et al.

0 100 101 102 103 104 105

Number of Singleton Clusters

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

 (
o
f

R
o
u

te
d

 P
re

fi
xe

s)

Num. Seeds
per Prefix

[2; 10)

[10; 102)

[102; 103)

[103; 104)

[104; 105)

(a) Singleton Clusters

0 100 101 102 103 104 105

Number of Grown Clusters

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 (

o
f

R
o
u

te
d

 P
re

fi
xe

s)

Num. Seeds
per Prefix

[2; 10)

[10; 102)

[102; 103)

[103; 104)

[104; 105)

(b) Grown Clusters

Figure 5: CDFs of the number of singleton and grown clusters that 6Gen outputs for routed prefixes with varying number of
seeds. We bucket routed prefixes by the number of seeds, and plot a curve for each bucket. Note we elide routed prefixes with
more than 100K seeds as the population size is too small for a meaningful distribution.

6.4 Selecting the Budget Parameter
In our analysis, we treat destination networks independently and do

not consider how to share scan budget across networks. However,

even within a single network, scan budget can drastically change

the patterns that are uncovered. To explore the effect of the budget

size, we evaluate 6Gen’s predictions on TCP/80 at varying budgets.

From Figure 4, we observe a plateau in the increase in the number

of dealiased hits as the budget approaches 1M probes per routed

prefix. This suggests that for many prefixes, meaningful clustering

has halted as the last grown clusters were not useful for generating

hits. Increasing the budget further may have diminishing returns,

thus we chose to operate by default with a budget of 1M probes

for each routed prefix.

6.5 6Gen’s Clusters
We find that 6Gen grows at least one cluster for the vast majority

of routed prefixes: only 3% of routed prefixes with 10 or more seeds

had no grown clusters and likewise for only 12% of prefixes with

2–10 seeds (Figure 5b). There are also few clusters (both singleton

and grown) relative to the number of seeds in each routed prefix.

For example, all seeds were part of a grown cluster for half of the

routed prefixes with 10–100 seeds and 80% of those routed prefixes

had five or fewer singletons. Half of the prefixes with 100–1000

seeds had 10 or less grown clusters. In other words, 6Gen clustered

the majority of seeds together and formed only a small number of

clusters rather than a large number of small clusters.

We also characterize our clusters by the location of dynamic

nybbles. As can be seen in Figure 6, there are two modes in the

frequency of dynamic nybbles across routed prefixes. The first mode

is from the 9th to the 16th nybble. This behavior is likely due to

addresses conforming to RFC 2460 [9], which specifies using the

first 64 bits of the address (or the first 16 nybbles) as a network

identifier. The second mode is after the 29th nybble. This behavior

is likely explained by RFC 7707 [17], which describes that using

5 10 15 20 25 30

Nybble Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P

o
rt

io
n

 o
f

R
o
u

te
d

 P
re

fi
xe

s

Figure 6: For each nybble (with an index between 1 and 32),
we plot the portion of routed prefixes that have any cluster
ranges with that nybble dynamic.

the least significant bits of the address (e.g., the highest nybbles

indexes) is common practice.

6.6 Address Analysis
6Gen generated 5.8 B scan targets when run with a budget of 1M

probes per routed prefix. Of those, 56.7M responded on TCP/80.

However, as discussed in §6.2, the vast majority (98%) are located in

extensively aliased regions. Here we explore the 1.0M responsive

addresses 6Gen discovered in non-aliased regions.

6Gen was able to find meaningful targets in 2,840 routed prefixes

associated with 2,368 ASes. This is 28% of the routed prefixes and

32% of the ASes that contained non-aliased seeds in our input set.

We show the distribution of hits across ASes in Figure 3 and list

the top ten ASes in Table 1c. We observe that the dealiased hits

Target Generation for Internet-wide IPv6 Scanning IMC ’17, November 1-3, 2017, London, UK

[101; 102) [102; 103) [103; 104) [104; 105)

Number of Seeds per Routed Prefix

0

100

101

102

103

104

105

106

N
u

m
b

e
r

o
f

H
it

s

Figure 7: The distribution of TCP/80 hits per routed prefix,
bucketed by the number of seeds in a prefix. We ran 6Gen
with a budget of 1M probes per prefix.We excluded prefixes
with less than 10 seeds as over 90%had zero hits, and prefixes
with more than 100K seeds as the population size was too
small for a meaningful distribution.

are slightly more skewed towards fewer ASes than the input seed

dataset. In particular, the top two ASes both belong to Amazon

and accounted for over 20% of our aliased hits. It is interesting to

note that Amazon AS-16509 contained both aliased and dealiased

hits (recall we manually inspected that certain Amazon subnets

were not fully responsive and aliased). Thus, ASes may vary their

aliasing policies across subnets and AS-level filtering of aliasing is

too coarse.

Figure 7 shows the distribution of the number of hits per routed

prefix bucketed by number of seeds. As indicated by the median

values for each bucket, we are able to find active addresses for a

majority of prefixes with more than 10 seeds. We observe a positive

correlation between the number of hits and the number of seeds

per routed prefix. One potential explanation is that 6Gen is not

discovering new addresses, but rather address churn. Hosts at now-

inactive seed addresses may have moved to new addresses, and

6Gen is only rediscovering these hosts. To assess this explanation,

we subtract the number of inactive seeds from the number of hits

for each routed prefix. For a quarter of prefixes, the difference was

positive, demonstrating 6Gen’s utility as it must have found new

addresses that cannot be due to network churn. For the remaining

prefixes, it is unclear whether 6Gen found churned addresses or

simply discovered fewer addresses than inactive seeds.

6.7 Seed Sensitivity
As 6Gen selects address regions to scan based on seeds, the seed

characteristics can impact 6Gen’s performance. Here we explore

how the input seeds affect 6Gen.

6.7.1 Type of Host. Our seed dataset contains IPv6 addresses

from DNS records that correspond with a diverse set of hosts (e.g.,

DNS, web, and SMTP servers). As an initial exploration of whether

seeds of one host type are suitable for discovering other types

of hosts, we executed 6Gen on only DNS name server seeds. We

W/o Dealiasing W/ Dealiasing

Downsampling Level Num. Hits % vs All Num. Hits % vs All

1% 758 K 1.3% 225 K 22.5%

10% 13.3M 23.5% 713 K 71.3%

25% 27.3M 48.2% 825 K 82.5%

100% 56.7M 100.0% 1.0M 100.0%

Table 2: For each downsampling level, both before and after
dealiasing, we list the number of hits 6Gen discovered and
what percentage that number is compared to the number of
hits 6Gen found using all seeds. In all experiments, the bud-
get was 1M probes per routed prefix.

identified name server hosts as those addresses in DNS NS records.

We fed these 61K seeds into 6Gen, ran it with a budget of 1M

probes per routed prefix, and scanned the outputted predictions on

TCP/80.

In total, we found 1.2M responsive addresses, of which 308Kwere

in non-aliased regions. While the number of discovered addresses

is drastically smaller when only using name server addresses, the

input seed dataset is also significantly reduced. Compared to the

name server seed set, 6Gen was able to find five times as many

non-aliased addresses and 19 times as many hits overall, indicating

that using seeds of one host type may be fruitful still in discovering

other hosts. However, we acknowledge this is an initial exploration,

and some host types may prove less useful as seeds.

6.7.2 Downsampling Seeds. As 6Gen executes faster with fewer

seeds, one may wish to downsample a seed dataset to improve

performance. To investigate the effect of downsampling, we explore

6Gen’s performance when run on 1%, 10%, and 25% of our full seed

dataset. For each downsampled seed input, we executed 6Gen with

a budget of 1M probes per routed prefix. We can see in Table 2

that 6Gen discovers fewer hits when given fewer seeds. However,

the decrease is not commensurate with the downsampling rate.

For example, compared to 6Gen with the full seed datset, 6Gen

with a 10% sample of seeds still finds 24% as many hits before

dealiasing and 71% after. At initial glance, 6Gen is quite robust to

seed downsampling, and still discovers a large number of hits even

when operating on a significantly reduced input dataset.

7 COMPARISON TO ENTROPY/IP
While Entropy/IP [14] is foremost an analysis tool for identifying

patterns in IPv6 addresses, we can use it to predict new addresses

that align with found patterns. As one of the state-of-the-art target

generation algorithms, Entropy/IP serves as a comparison point

for 6Gen. We compare the algorithms through two evaluations: a

train-and-test experiment where we train on a subset of seeds and

evaluate what fraction of the remaining seeds are predicted, and

an active scan where we compare the number of hits predicted.

We conducted our evaluations using a copy of Entropy/IP pro-

vided by its authors. Our seed dataset was likewise obtained from

the Entropy/IP authors, containing a random sample of 10 K ad-

dresses collected from five content distribution networks (labeled

as CDNs 1–5) used in the original Entropy/IP evaluation [14].

IMC ’17, November 1-3, 2017, London, UK Murdock et al.

0 100 200 300 400 500 600 700 800 900 1000

Budget per CDN (in Thousands of Probes)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

F
ra

ct
io

n
 o

f
T

e
st

 A
d

d
re

ss
e
s

F
o
u

n
d

6Gen CDN1

E/IP CDN1

6Gen CDN2

E/IP CDN2

(a) CDNs 1 and 2

0 100 200 300 400 500 600 700 800 900 1000

Budget per CDN (in Thousands of Probes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
 o

f
T

e
st

 A
d

d
re

ss
e
s

F
o
u

n
d

6Gen CDN3

E/IP CDN3

6Gen CDN4

E/IP CDN4

6Gen CDN5

E/IP CDN5

(b) CDNs 3, 4, and 5

Figure 8: The fraction of addresses in the five CDN test sets found by 6Gen and Entropy/IP during the train-and-test evaluation,
for varying budgets.

0 100 200 300 400 500 600 700 800 900 1000

Budget per CDN (in Thousands of Probes)

0

100

200

300

400

500

600

N
u

m
b

e
r

o
f

H
it

s
w

it
h

o
u

t
F

il
te

ri
n

g
 A

li
a
si

n
g

(i
n

 T
h

o
u

sa
n

d
s)

6Gen CDN2

E/IP CDN2

6Gen CDN3

E/IP CDN3

6Gen CDN4

E/IP CDN4

6Gen CDN5

E/IP CDN5

(a) Without Filtering for Aliasing

0 100 200 300 400 500 600 700 800 900 1000

Budget per CDN (in Thousands of Probes)

0

20

40

60

80

100

120

140

160

N
u

m
b

e
r

o
f

H
it

s
a
ft

e
r

F
il

te
ri

n
g

 A
li

a
si

n
g

(i
n

 T
h

o
u

sa
n

d
s)

6Gen CDN2

E/IP CDN2

6Gen CDN3

E/IP CDN3

6Gen CDN5

E/IP CDN5

(b) Filtering for Aliasing

Figure 9: The number of TCP/80 hits for targets generated in five CDN networks by 6Gen and Entropy/IP, for varying budgets,
both with and without filtering for aliasing. Both 6Gen and Entropy/IP performed poorly on CDN 1 and did not find a signif-
icant number of hosts, and hence we elided CDN 1 from the graphs. We removed CDN 4 from the post-filtering graph as it
extensively aliased.

7.1 Train-and-Test Evaluation
For each of the five CDN datasets, we split the addresses into

10 groups at random (each with 1 K addresses). We then ran both

6Gen and Entropy/IP on each 10% sample and validated against

the remaining 90%—a form of inverse k-fold validation. We can see

in Figure 8 that 6Gen found a similar or larger number of test ad-

dresses than Entropy/IP for all networks. Excluding CDN 1, where

Entropy/IP failed to predict any test addresses, 6Gen with a bud-

get of 1M probes predicted 1.04–7.95 times more addresses than

Entropy/IP (with the same budget). We note that both algorithms

failed to discover the majority of test addresses for CDNs 1 and 2.

For CDNs 4 and 5, both algorithms predicted over 88% of the test

addresses. Notably, 6Gen was able to find over 99% of the test ad-

dresses for CDN 4.

We observe that 6Gen is significantly more effective than En-

tropy/IP when operated with a limited budget. However, Entropy/IP

may output a greater diversity of address predictions than 6Gen

at lower budgets, as Entropy/IP samples targets from multiple ad-

dress regions without prioritizing density. This behavior also results

in the smoother performance curves for Entropy/IP compared to

6Gen, as a small increase in the probe budget may allow 6Gen to

greedily incorporate a new dense region, causing a jump in address

discoveries. This difference in how the probe budget affects each

algorithm is noteworthy. Entropy/IP uses the budget only to adjust

Target Generation for Internet-wide IPv6 Scanning IMC ’17, November 1-3, 2017, London, UK

the number of targets generated, while 6Gen also uses the budget to

determine the regions of address space it selects. For Entropy/IP’s

original goal of address pattern analysis, the concept of a budget

was not necessary to make decisions. However, modifying the al-

gorithm to specifically cater to scanning purposes, such as through

factoring in a budget when identifying probable address patterns,

may enhance its applicability to Internet-wide scanning.

7.2 Active Scans Comparison
As a second evaluation, we conducted active TCP/80 SYN scans

of each algorithm’s predictions. Similar to the previous experi-

ment, we find that 6Gen performed nearly equivalent to or better

than Entropy/IP for all CDN networks in terms of both total and

dealiased hits (Figure 9). For filtered hits, with the budget set to 1M

probes, 6Gen found 0.99–134.48 times more hits than Entropy/IP.

Entropy/IP and 6Gen found a similar number of hits in CDN 5,

and neither algorithm received a significant number of responses

in CDN 1. However, 6Gen greatly outperformed Entropy/IP in

CDNs 2, 3, and 4. Note that we removed CDN 4 when consider-

ing filtered hits as it extensively aliased. While the number of hits

discovered serves as a basic metric for evaluating and comparing

6Gen’s and Entropy/IP’s ability to produce promising address tar-

gets, further evaluation is required to understand the differences

between the algorithms.

8 FUTUREWORK
In this paper, we introduced 6Gen and evaluated its effectiveness.

6Gen shows promise and discovers millions of previously-unknown

addresses. However, we also uncovered widespread aliasing. Here,

we discuss several future directions that the research community

needs to consider in order to understand IPv6 address allocation

and improve IPv6 scanning.

IPv6 Dealiasing. Our investigation of IPv6 aliasing in §6.2 un-

covered extensive aliasing in a number of large networks. In total,

98% of the /96 prefixes we discovered responsive targets in exhibited

aliasing on TCP/80. Filtering addresses in aliased regions signifi-

cantly reduced our hits, resulting in a different characterization of

6Gen’s performance. Future efforts in IPv6 target generation and

scanning must factor in aliasing when quantifying performance.

We note that prior work on IPv6 target generation has not factored

in aliasing [14, 31] and their findings may not represent the number

of distinct hosts that each algorithm can discover.

Detecting IPv6 aliasing is itself a significant challenge. In this

work, we used a simple approach of detecting aliasing at the /96

prefix granularity, but this method naturally has limitations (such as

identifying smaller-scale aliasing). Prior efforts to develop effective

IPv6 dealiasing have shown promise, but are limited by features

enabled on the target host. Further exploration is needed to develop

scalable and reliable alias resolution, to better understand the topol-

ogy of the IPv6 Internet, and to more accurately characterize IPv6

scanner performance.

Deeper Exploration of Target GenerationAlgorithms.Our
initial evaluation of TGAs focused on the ability of 6Gen and En-

tropy/IP to discover hosts responsive on TCP/80 using seeds gath-

ered from DNS records. We must more deeply understand how each

algorithm is affected by different network characteristics, the types

of hosts found by each, and the tradeoffs between the two. Further

exploration of other network services and seed address inputs will

also help shed light on the operating characteristics of these algo-

rithms. For example, how do 6Gen and Entropy/IP perform when

seeking SMTP or SSH servers? Do their predictions differ when

run on only active seeds (seeds freshly probed for responsiveness),

or on seeds that are first dealiased?

We also lack a deep understanding of when each algorithm is

effective and why. Are there certain types of address assignment

patterns that an algorithm is not amenable to discovering? Are there

optimizations we can apply to better improve probing efficiency,

based on common patterns? For example, 6Gen’s budget use is

suboptimal when a network employs a clear address assignment

pattern, as it fails to leverage learnable information for budget

conservation.

There is still much to consider about 6Gen’s operations. For

example, we employed 6Gen with an identical budget for all routed

prefixes. However, it might be natural to allocate budgets differently

for various routed prefixes. For example, a routed prefix’s budget

could be dependent on the number of seeds within, or the size of the

prefix itself. This may heavily skew the target generation towards

denser networks though, trading off diversity for number of active

addresses found. What the most suitable budget allocation policy

is, and how this differs based on target generation goals, is still an

open question.

Scanner Integration. In this paper, we have considered the

TGA as a distinct module that produces targets fed to a network

scanner. However, tight integration between the target generation

and the scanning processes should allow formore effective scanning.

The target generation could provide the initial regions of address

space to begin exploring. As a scan progresses, the results can be fed

back to the generation algorithm, allowing it to dynamically adapt

its predictions based on the additional information. For example,

we can early terminate scanning of a region originally predicted

as promising but that has yielded few discovered hosts. Similarly,

we can test regions that have high hit rates for aliasing, and halt

scanning if aliasing is detected. These measures would allow the

scanner to reallocate budget to networks that prove promising in

reality. Ultimately, such integration allows the target generation

to behave more intelligently, as it is has a feedback loop to better

inform its decisions.

9 CONCLUSION
In this work, we explored the basic challenge of generating promis-

ing IPv6 addresses to scan. We presented 6Gen, a new target gener-

ation algorithm that executes on a set of input seed addresses, given

a user-supplied probe budget. 6Gen operates under the assumption

that address space regions with high densities of similar seeds cor-

relate with those rich with active hosts, and seeks out targets in

these regions.

When evaluated on real-world seed datasets containing ad-

dresses in thousands of network prefixes, 6Gen showed promise and

discovered over 55M responsive addresses (with a budget of 1M

probes per routed prefix). However, upon inspecting these hits, we

also uncovered a small number of networks exhibiting large-scale

IP aliasing. Over 98% of our original hits were in aliased networks,

IMC ’17, November 1-3, 2017, London, UK Murdock et al.

highlighting the extent that IP aliasing can affect performance met-

rics for target generation. When filtering out aliased hits, 6Gen

was still able to find over a million new addresses. Our comparison

with Entropy/IP [14]—the current state of the art TGA—likewise

demonstrated 6Gen’s utility. On the five seed datasets used in the

original Entropy/IP evaluation, 6Gen recovered between 1–8 times

as many addresses during a train-and-test evaluation.

Our exploration of the IPv6 target generation space has high-

lighted important areas for future investigation. In particular, IPv6

aliasing will be a network feature that future TGAs and network

scanners must contend with. In addition, target generation must be-

come more intelligent, perhaps through tightly integrating with the

network scanner. With an IPv6 scanner that can obtain a significant

degree of global visibility into the IPv6 address space, researchers

can begin to tackle the myriad of security and measurement ques-

tions that have been explored for IPv4.

10 ACKNOWLEDGEMENTS
We thank Arthur Berger, David Plonka, and Paul Pearce for exten-

sive discussion and feedback. We are grateful to Jed Crandall and

the University of New Mexico network administrators for provid-

ing us with infrastructure to conduct Internet-scale IPv6 scanning,

and supporting our efforts. We additionally appreciate Jon Hart’s

assistance in obtaining and understanding our seed dataset of IPv6

addresses. This work was supported in part by CNS-1111672, CNS-

1237265, and CNS-1518921. The opinions expressed in this paper

do not necessarily reflect those of the research sponsors.

REFERENCES
[1] OpenMP. http://www.openmp.org.

[2] Alexa. Top 1,000,000 Sites. http://www.alexa.com/topsites.

[3] S. M. Bellovin, B. Cheswick, and A. Keromytis. Worm Propagation Strategies in

an IPv6 Internet. ;login: The USENIX Magazine, 2006.
[4] J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wustrow.

Elliptic Curve Cryptography in Practice. In International Conference on Financial
Cryptography and Data Security, 2014.

[5] Center for Applied Internet Data Analysis. Archipelago (Ark) Measurement

Infrastructure. http://www.caida.org/projects/ark/.

[6] Center for Applied Internet Data Analysis. CAIDA IPv6 DNS Names Dataset.

http://www.caida.org/data/active/ipv6dnsnamesdataset.xml.

[7] Center for Applied Internet Data Analysis. RouteViews Prefix to AS Mappings

Dataset. http://www.caida.org/data/routing/routeviews-prefix2as.xml.

[8] J. Czyz, M. Luckie, M. Allman, andM. Bailey. Don’t Forget to Lock the Back Door!

A Characterization of IPv6 Network Security Policy. In Network and Distributed
Systems Security (NDSS), 2016.

[9] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC

2460 (Standards Track), 1998.

[10] R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney. Dynamic Host

Configuration Protocol for IPv6 (DHCPv6). RFC 3315 (Standards Track), 2003.

[11] Z. Durumeric, F. Li, J. Kasten, N. Weaver, J. Amann, J. Beekman, M. Payer,

D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman. The Matter of Heart-

bleed. In ACM Internet Measurement Conference (IMC), 2014.
[12] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-Wide

Scanning and Its Security Applications. In Usenix Security, 2013.
[13] T. Fiebig, K. Borgolte, S. Hao, C. Kruegel, and G. Vigna. Something From Noth-

ing (There): Collecting Global IPv6 Datasets From DNS. In Passive and Active
Measurement (PAM), 2017.

[14] P. Foremski, D. Plonka, and A. Berger. Entropy/IP: Uncovering Structure in IPv6

Addresses. In ACM Internet Measurement Conference (IMC), 2016.
[15] O. Gasser, Q. Scheitle, S. Gebhard, and G. Carle. IPv6 Hitlist Collection. http:

//www.net.in.tum.de/pub/ipv6-hitlist/.

[16] O. Gasser, Q. Scheitle, S. Gebhard, and G. Carle. Scanning the IPv6 Internet:

Towards a Comprehensive Hitlist. Network Traffic Measurement and Analysis
Conference (TMA), 2016.

[17] F. Gont and T. Chown. Network Reconnaissance in IPv6 Networks. RFC 7707

(Informational), 2016.

[18] R. D. Graham. MASSCAN: Mass IP Port Scanner. https://github.com/robertdavid

graham/masscan.

[19] R. W. Hamming. Error Detecting and Error Correcting Codes. Bell Labs Technical
Journal, 1950.

[20] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. RFC 4291 (Draft

Standard), 2006.

[21] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy, S. Savage, and V. Pax-

son. You’ve Got Vulnerability: Exploring Effective Vulnerability Notifications.

In USENIX Security Symposium, 2016.

[22] M. Luckie, R. Beverly, W. Brinkmeyer, et al. Speedtrap: Internet-Scale IPv6 Alias

Resolution. In ACM Internet Measurement Conference (IMC), 2013.
[23] P. Marchetta, V. Persico, and A. Pescapè. Pythia: Yet Another Active Probing

Technique for Alias Resolution. In ACM Emerging Networking Experiments and
Technologies (CoNEXT), 2013.

[24] R. Padmanabhan, Z. Li, D. Levin, and N. Spring. UAv6: Alias Resolution in IPv6

Using Unused Addresses. In Passive and Active Measurement (PAM), 2015.
[25] D. Plonka and A. Berger. Temporal and Spatial Classification of Active IPv6

Addresses. In ACM Internet Measurement Conference (IMC), 2015.
[26] Rapid7. DNS Records (ANY). https://scans.io/study/sonar.fdns.

[27] Rapid7. Project Sonar. https://sonar.labs.rapid7.com/.

[28] Rapid7. Reverse DNS. https://scans.io/study/sonar.rdns.

[29] Q. Scheitle, O. Gasser, M. Rouhi, and G. Carle. Large-scale Classification of

IPv6-IPv4 Siblings with Variable Clock Skew. In Network Traffic Measurement
and Analysis Conference (TMA), 2017.

[30] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless Address Autoconfiguration.

RFC 4862 (Draft Standard), 2007.

[31] J. Ullrich, P. Kieseberg, K. Krombholz, and E. Weippl. On Reconnaissance with

IPv6: A Pattern-Based Scanning Approach. InAvailability, Reliability and Security
(ARES), 2015.

http://www.openmp.org
http://www.alexa.com/topsites
http://www.caida.org/projects/ark/
http://www.caida.org/data/active/ipv6 dnsnames dataset.xml
http://www.caida.org/data/routing/routeviews-prefix2as.xml.
http://www.net.in.tum.de/pub/ipv6-hitlist/
http://www.net.in.tum.de/pub/ipv6-hitlist/
 https://scans.io/study/sonar.fdns
https://sonar.labs.rapid7.com/
 https://scans.io/study/sonar.rdns

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	3.1 Extracting IPv6 Addresses
	3.2 Identifying Addressing Patterns
	3.3 Generating Scan Targets

	4 IPv6 Scanning Considerations
	4.1 Seed Selection
	4.2 Seed Analysis

	5 6Gen Algorithm
	5.1 Overview
	5.2 Distance Metric
	5.3 Cluster Range Definitions
	5.4 Algorithm Details
	5.5 Optimizations
	5.6 Performance Evaluation

	6 Evaluation
	6.1 Seed Collection
	6.2 Dealiasing
	6.3 Design Decision: Tight versus Loose Ranges
	6.4 Selecting the Budget Parameter
	6.5 6Gen's Clusters
	6.6 Address Analysis
	6.7 Seed Sensitivity

	7 Comparison to Entropy/IP
	7.1 Train-and-Test Evaluation
	7.2 Active Scans Comparison

	8 Future Work
	9 Conclusion
	10 Acknowledgements
	References

